---, ID ----

© copyright Ayman Badawi 2016

MTH 418 Graph Theory Spring 2016, 1–1

HW Three, MTH 418, Spring 2016

Ayman Badawi

- **QUESTION 1.** (i) Let *H* be a circuit graph that is not a cycle. First show that *H* has at least 5 vertices. Then show that *H* must have a cycle (i.e., show that girth of H not = infinity)
- (ii) Construct a graph H that is a circuit but not a cycle with exactly 7 edges. Find the girth of H.
- (iii) Let H be a connected graph with diameter 3. Prove (in at most three lines) that \overline{G} is connected.
- (iv) Let H be a graph of order m, $d_1 = |E(H)|$, and $d_2 = |E(\overline{H})|$. Prove that $d_1 + d_2 = \frac{m^2 m}{2}$.
- (v) Find the adjacency matrix of C_4 , say A. Use a calculator and find the eigenvalues of A, say a_1, a_2, a_3, a_4 (there must be 4 eigenvalues but not necessarily distinct). Find $d = a_1^2 + ... + a_4^2$. What is the relation between d and the size of C_4 . In fact, your conclusion is true if we let A be an adjacency matrix of a graph H (nothing special about C_4).
- (vi) Let *H* be a graph with vertex-set = $\{v_1, ..., v_j\}$ and $D = K_3$ with vertex-set = $\{w_1, w_2, w_3\}$, Let $F = H \times D$ (Graph Product). Hence $(v_1, w_1), (v_2, w_3) \in V(F)$. Assume $v_1 v_3 v_5 v_2$ is the shortest path (walk) in *H* from v_1 to v_2 . Find the distance between (v_1, w_1) and (v_2, w_3) . Construct a shortest path from (v_1, w_1) to (v_2, w_3) .
- (vii) Let $H = K_{3,3}$. Construct two graphs F, D such that F, D, H are non-isomorphic graphs but H, F, and D have the same associated non-increasing sequence on the degrees of the vertices.
- (viii) Convince me that it is impossible to construct a graph of order 7 such that each vertex is of degree 5. Convince me it is possible to construct a graph of order 8 such that each vertex is of degree 6. If possible, Construct a connected graph of order 8 such that each vertex is of degree 5.
- (ix) Give me an example of two graphs, each is of order 6, both have the same associated non-increasing sequence on the degrees of the vertices, but one of them is disconnected while the other is connected.

Due date: Sunday at noon March 20,2016 Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com