HW Three, MTH 418, Spring 2016

Ayman Badawi

QUESTION 1. (i) Let H be a circuit graph that is not a cycle. First show that H has at least 5 vertices. Then show that H must have a cycle (i.e., show that girth of H not $=$ infinity)
(ii) Construct a graph H that is a circuit but not a cycle with exactly 7 edges. Find the girth of H.
(iii) Let H be a connected graph with diameter 3. Prove (in at most three lines) that \bar{G} is connected.
(iv) Let H be a graph of order $m, d_{1}=|E(H)|$, and $d_{2}=|E(\bar{H})|$. Prove that $d_{1}+d_{2}=\frac{m^{2}-m}{2}$.
(v) Find the adjacency matrix of C_{4}, say A. Use a calculator and find the eigenvalues of A, say $a_{1}, a_{2}, a_{3}, a_{4}$ (there must be 4 eigenvalues but not necessarily distinct). Find $d=a_{1}^{2}+\ldots+a_{4}^{2}$. What is the relation between d and the size of C_{4}. In fact, your conclusion is true if we let A be an adjacency matrix of a graph H (nothing special about C_{4}).
(vi) Let H be a graph with vertex-set $=\left\{v_{1}, \ldots, v_{\}}\right.$and $D=K_{3}$ with vertex-set $=\left\{w_{1}, w_{2}, w_{3}\right\}$, Let $F=H \times D$ (Graph Product). Hence $\left(v 1, w_{1}\right),\left(v_{2}, w_{3}\right) \in V(F)$. Assume $v_{1}-v_{3}-v_{5}-v_{2}$ is the shortest path (walk) in H from v_{1} to v_{2}. Find the distance between $\left(v 1, w_{1}\right)$ and $\left(v_{2}, w_{3}\right)$. Construct a shortest path from $\left(v 1, w_{1}\right)$ to $\left(v_{2}, w_{3}\right)$.
(vii) Let $H=K_{3,3}$. Construct two graphs F, D such that F, D, H are non-isomorphic graphs but H, F, and D have the same associated non-increasing sequence on the degrees of the vertices.
(viii) Convince me that it is impossible to construct a graph of order 7 such that each vertex is of degree 5. Convince me it is possible to construct a graph of order 8 such that each vertex is of degree 6 . If possible, Construct a connected graph of order 8 such that each vertex is of degree 5 .
(ix) Give me an example of two graphs, each is of order 6, both have the same associated non-increasing sequence on the degrees of the vertices, but one of them is disconnected while the other is connected.

Due date: Sunday at noon March 20,2016 Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

